Editorial
Welcome to the seventh issue of the AMG Newsletter, which includes articles on clausiliid land snails in Turkey and the UK, Mediterranean scaphopods, an archaeomalacological anomaly from Israel and shell-working in the western Pacific, as well as abstracts of papers, a request for information, and the ICAZ Archaeomalacology Working Group Meeting report from Florida.

The newsletter continues to flourish, thanks to the efforts of contributors. Please may I encourage everyone to send me short articles, research reports, abstracts of papers or any snippets of information that may be of interest to fellow archaeomalacologists. This is your opportunity to share information – I look forward to hearing from you!

As always, thanks are due to Kath Szabo of the ICAZ Archaeomalacology Working Group and to Aydin Orstan for posting this newsletter on their websites: http://triton.anu.edu.au/ and http://home.earthlink.net/~aydinslibrary/AMGnews.htm, respectively. The next issue, number 8, will appear at the end of September 2005. (JRS)

The land snails (Gastropoda: Pulmonata: Stylommatophora: Clausiliidae) of the ancient cities in the Marmara, the Ege (Aegean) and the Akdeniz (Mediterranean) regions of Turkey
Burçin Aşkim Gümüş
Süleyman Demirel University, Isparta, Turkey
Email: burcinaskim@hotmail.com; burcingastropoda@hotmail.com

Abstract
The aim of this study was to determine the clausiliid fauna of the ancient cities and associated ruins and cemeteries in the Marmara, Ege (Aegean) and Akdeniz (Mediterranean) regions of Turkey. The synanthropic distribution of these species and subspecies, and the possibility of their transport by construction materials (wood, marble and limestone) are discussed.

Clausiliidae were collected from 18 stations in the research area: at Troy (Çanakkale); Ephesus (Selçuk-Izmir); Notion (Ahmetbeyli-Izmir); Tralleis (Üçgözler-Aydın); the ruins of the Mausoleum, theatre and castle at Bodrum (Bodrum-Muğla); the cemeteries, Kaya Köy and the islands of Karacaören and Saint Nicholas at Telmessos (Fethiye-Muğla); Side (Manavgat-Antalya); Sillyon (Abdurrahmanlar, Serik-Antalya); Yazlığı Kanyon (Çanır, Sütçüler-Isparta); Adada (Sütçüler-Isparta); Antioch (Yalvaç-Isparta); Hierapolis (Pamukkale-Denizli); and Sagalassos (Ağlasun-Burdur).

Five species and one subspecies belonging of Albinaria (Alopiinae) and two species of Sprattia (Mentissoideinae) were recorded from the research area.

Introduction
The family Clausiliidae (the door snails) contains one-fifth of European land snail species (Welter-Schultes, 2000). Members of this family are widespread throughout the Western Palaearctic, Southern Ethiopic, Oriental, and Northern and Western Neotropical regions. In
Europe they reach their maximum diversity in the Balkans and the Caucasus. Geographical subspeciation is common in this family (Kerney and Cameron, 1979).

Over the last 40 years the Clausiliidae of Turkey have been intensively studied by several authors (Gümüş, 2004). It is known that members of this family occur in the Marmara region (Tekirdağ, Istanbul, İzmit, Bilecik, Bursa), western Turkey (İzmir, Aydın, Balıkesir, Muğla.), southern Turkey (Antalya, Mersin, Adana, Hatay), central Turkey (Konya), the western and eastern Black Sea region (Bolu, Sinop, Kastamonu, Artvin, Rize), southeast Turkey (Gaziantep and Kahramanmaraş) and eastern Turkey (Erzurum and Kars) (Schütt, 2001).

Clausiliids live on the shores of northern, western and southern Turkey and also on the Aegean Islands. They live under the ground litter in woods and in the crevices of limestone rocks. Some species prefer damp shady places whereas other species prefer to aestivate on limestone outcrops exposed to sunlight.

Materials and methods
Specimens were collected from 18 stations and were identified (Likharev and Rammelmeier, 1962; Nordsieck, 1963, 1993; Neubert, 1992, 1993a, 1993b; Bank and Menkhorst, 1994; Welter-Schultes, 2000; Schütt, 2001). Live specimens were preserved in 70% alcohol. All the specimens are held in the author’s personal collection.

The stations were:

A1: The ancient city of Truva; (Troy) Çanakkale.
A2: The ancient city of Efes; (Ephesus) Selçuk-İzmir.
A3: The ancient city of Notiyon; (Notion) Ahmetbeyli-İzmir.
A4: The ancient city of Tralleis; (Tralleis) Üçgözler-Aydın.
A5: The ruins of Mosoleyum; (Mausoleum) Bodrum-Muğla.
A6: The ancient theatre of Bodrum, Muğla.
A7: The castle of Bodrum, Muğla.
A8: The ancient cemeteries of Telmessos, Fethiye-Muğla.
A9: Kaya Köy, Telmessos Antik Kenti, Fethiye-Muğla.
A10: Karacaören Island, Ölüdeniz, Fethiye-Muğla.
A12: The ancient city of Side Antik Kenti, Manavgat-Antalya.
A13: The ancient city of Silyon; (Sillyon) Abdurrahamanlar, Serik-Antalya.
A14: Yazılı Kanyon, Çandır, Sütçüler-Isparta.
A15: The ancient city of Adada, Sütçüler-Isparta.
A16: The ancient city of Antihokya; (Antioch) Yalvaç-Isparta.
A17: The ancient city of Hiyerapolis; (Hierapolis) Pamukkale-Denizli.
A18: The ancient city of Sagalassos; Ağlasun-Burdur.

Results and discussion
The clausiliid taxa collected during the survey and the stations where they were found are listed in Table 1. No specimens were collected from stations A1, A4, A15, A16, A17 and A18.

Fifteen species belonging to the genus _Albinaria_ Vest, 1867 have been recorded from southwest Turkey (Shütt, 2001). _A. anatolica_ (Roth, 1839), _A. basalifera_ Neubert, 1992 and _A. myrensis_ H. Nordsieck, 1993 are known to be local species that live in the Aegean and west Mediterranean districts of Turkey. _A. brevicollis_ (L. Pfeiffer, 1850) and _A. lerosiensis_ (L. Pfeiffer, 1841) are found in the Aegean and southwest Mediterranean districts of Turkey and also in the Dodecanese islands of Greece. _A. coerulea maculata_ (Rossmässler, 1835) is recorded from Efes, Selçuk-İzmir.
Albinaria anatolica (Roth, 1839) A8, A10
Albinaria basalifera Neubert, 1992 A8, A9, A10
Albinaria brevicollis (L. Pfeiffer, 1850) A7
Albinaria coerulaea maculata (Rossmässler, 1835) A2
Albinaria lerosiensis (L. Pfeiffer, 1841) A3, A5, A6
Albinaria myrens H. Nordsieck, 1993 A12
Sprattia sowerbyana (L. Pfeiffer, 1850) A12
Sprattia sillyonensis H. Nordsieck, 1994 A13, A14

Table 1. The species and subspecies reported from the research area.

Albinaria coerulaea (Rossmässler, 1835) was not found in the research area. This species is known to live in İzmir, Aydın and in the Cycládes and the Sporádes islands of Greece (Welter-Schultes, 2000; Schütt, 2001).

Albinaria species live preferentially on limestone rocks. Shells and live specimens were collected both from the crevices and the face of limestone outcrops during the hot and dry summer period in the research area. These species were found around the settlements in areas disturbed by humans and in natural habitats adjacent to the ancient settlements and ruins.

Specimens of A. coerulaea maculata were only collected from A2. A. lerosiensis was found at stations A3, A5 and A6. They were collected from the ruins of the ancient settlements near the shore and also from the limestone rocks around the ruins. It has been observed that A. lerosiensis is widespread around İzmir and Muğla (Gümüş, 2004), which suggests that this species is native to the area.

Albinaria anatolica and A. basalifera were sympatric at A8, where these local species may have invaded the ancient cemetery. A. brevicollis (L. Pfeiffer, 1850) was only found at the castle of Bodrum (A7). No specimens were collected around Bodrum (Gümüş, 2004) and it is suggested that this species was introduced to the castle together with the construction materials (paper in preparation by Örstan, Yıldırım, Gümüş and Welter-Schultes).

Albinaria myrensis and Sprattia sowerbyana (L. Pfeiffer, 1850) were sympatric at A12. S. sowerbyana is a local species and is widespread around Isparta and Antalya (Schütt, 2001). S. sillyonensis H. Nordsieck, 1994 is a local species (Schütt, 2001) and was collected from its type locality at A13 (the ancient city of Sillyon) and from A14.

My special thanks to my mother (Nuray Kayıkçı) and my sister (Ezgi Oya Gümüş) who collected the snails with me.

This paper was presented at the 1st National Malacology Congress, İzmir, Turkey, 1-3 September 2004.

References
A second look at an enigmatic shell object from the excavation of Ohalo II, Sea of Galilee, Israel

Henk K. Mienis

National Mollusc Collections at the Dept. Evolution, Systematics & Ecology, Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel, and
The Zoological Museum, Tel Aviv University, IL-69978 Tel Aviv, Israel

Email: mienis@netzer.org.il

Ohalo II is a submerged site dating back to the Last Glacial Maximum (LGM). The site became exposed during a sharp drop in the water level of the Sea of Galilee and has been excavated at intervals since 1989. Although it has been classified as a 23,000-year-old fisher-hunter-gatherers’ camp, the average age of the remains discovered at the site is about 19,500 BP. For more information concerning this site and the publications dealing with it, I would like to refer the reader to the website dedicated to Ohalo II at: http://ohalo.haifa.ac.il/.

Bar-Yosef Mayer (2002) has briefly dealt with the marine molluscs recovered at the site, while I have studied the land and freshwater gastropods and bivalves. Preliminary remarks concerning the inland molluscs have been published in Nadel et al., 2004 [see abstract on page 8 of this newsletter]. Unfortunately the land and freshwater molluscs from Ohalo II showed a mixture of shells covering the whole period from today to about 19,500 years ago, without a clear differentiation between recent and archaeomalacological material (see also Mienis, 2004).

However, the subject of this short note is neither the material studied by my colleague Daniella Bar-Yosef Mayer nor by myself, but an enigmatic shell referred to by Nadel (1993). He described a piece of a manipulated shell found on the surface of the site as follows: “One artifact, found on the surface, was a beautifully carved and decorated shell fragment (Fig. 8). It is 3 cm long and has the shape of a tail or a flower. The shell was identified by Prof. E. Tchernov of the Hebrew University as Unia (sic!, HKM) terminalis. A fragment was analyzed by Dr G. Goodfriend of the Weizmann Institute, who came to the conclusion that it was no older than 200-300 years old”.

It is most unlikely that the late Prof. Eitan Tchernov had actually seen this object but more likely only a photograph of it. Being the author of a monograph on the freshwater molluscs of the Sea of Galilee (Tchernov, 1975), he would not otherwise have recognized that artefact as a manipulated Unio terminalis, of which he had handled hundreds of specimens.

The colour pattern of the artefact, which has alternating brown and cream bands, rules out an assignment to Unio. The shell is very thin, shows a completely different structure and is made of a different material than that of freshwater mussels. Besides that, it shows an internal ‘rim’ at ¼ of its length. This small artefact was immediately recognised as being made out of the shell of the Pearly or Chambered Nautilus, Nautilus pompilius Linnaeus, 1758, the identification of which I could prove to Dr Dani Nadel by showing him a sectioned specimen of a Nautilus. The
colour pattern, thickness and composition of the shell agrees in every detail with that of the
carved shell item. The internal ‘rim’ is where an internal wall of one of the chambers is joined to
the inner wall of the outer shell.

It is fortunate that the late Dr Glenn Goodfriend dated the artefact as being less than 200-300
years old and that it was not considered to be part of the 19,500-year-old assemblage from Ohalo
II by Nadel (1993). Who would be able to explain the presence of a manipulated piece of
Nautilus pompilius at Ohalo II in view of the fact the Pearly or Chambered Nautilus is confined
in its distribution to the Western Pacific Ocean?

This story teaches us another important thing: always treat surface finds with suspicion.

Acknowledgement

I would like to thank Dr D. Nadel (University of Haifa) for showing me the shell artefact from
Ohalo II.

References

Nadel, D., 1993. Submerged archaeological sites on the shores of Lake Kinneret, Israel. *Atiqot (English Series)*, 22:
1-12.

Nadel, D., Tsatskin, A., Belmaker, M., Boaretto, E., Kislev, M., Mienis, H., Rabinovich, R., Simechoni, O.,
Simmons, T., Weiss, E. and Zohar, I., 2004. On the shore of a fluctuating lake: environmental evidence from

Important changes in the names of some Scaphopoda from the Mediterranean

Henk K. Mienis

National Mollusc Collections at the Dept. Evolution, Systematics & Ecology, Hebrew University of Jerusalem,
IL-91904 Jerusalem, Israel, and

The Zoological Museum, Tel Aviv University, IL-69978 Tel Aviv, Israel

Email: mienis@netzer.org.il

Recently Steiner and Kabat (2001, 2004) have published two very important papers concerning
the nomenclature of the recent and fossil Scaphopoda. One of their most important conclusions
concerns a number of Mediterranean species, which were classified until now in the genus
Dentalium Linnaeus, 1758. It has been shown that they belong instead to the genus *Antalis* H. &
A. Adams, 1854. Therefore we need to become accustomed to the usage of such names as
Antalis dentalis (Linnaeus, 1758), *Antalis entalis* (Linnaeus, 1758), *Antalis inaequicostata*
(Dautzenberg, 1891), *Antalis panorma* (Chenu, 1842), *Antalis rossati* (Caprotti, 1966) and
Antalis vulgaris (Da Costa, 1778).

All these dentaliid species are commonly encountered in excavations dating back to the
Mesolithic and Neolithic periods. Especially during the Natufian period, these shells were
exploited in very large numbers as head-, arm-, hip- and thigh-bands. The reason why these
species, which usually live in rather deep water, were more intensively exploited than
during other periods is directly related to the fact that the level of the Mediterranean Sea off the
Levant coast had dropped by up to 120 m due to the effects of last Ice Age (Porat *et al*., 2003;
Avital *et al*., 2004). In other words, during a large part of the Mesolithic and Early Neolithic
periods man could stroll unhampered on the dry bed of the Mediterranean Sea in search of shells.
It is noteworthy that during the same prehistoric periods man also exploited scaphopods from the Red Sea and local fossil bearing strata, although in far fewer numbers. Those from the Red Sea are true *Dentalium* species, while the fossils might include species belonging to the genera *Dentalium*, *Antalis* and *Fissidentalium* P. Fischer, 1885.

References

Request for information:

Dear Colleagues

I am studying biometric variation in *Helix cf. ligata* (Helicidae) from Upper Palaeolithic levels of Grotta della Serratura (Salerno, southern Italy). This approach is intended to demonstrate that the main characteristic of the edible land snail gathering activity at Grotta della Serratura was the size selection of the specimens. I would like to know, please, if anyone has carried out similar work.

Thank you very much.

Best regards from Andre Carlo Colonese, email: colonese@unisi.it

Papillifera papillaris (Gastropoda: Clausiliidae): a new record for Britain

Janet Ridout Sharpe
66 Radnor Road, Wallingford, Oxfordshire OX10 0PH, UK
Email: janet_sharpe@beebo.net

In April 2004 I gave a talk entitled ‘Shells in archaeology’ to a local amateur archaeological society in the Thames Valley (UK). During the talk I described some of the ways in which molluscs can provide clues to the interpretation of the past, and I mentioned the accidental introduction of land snails into new geographical areas as a byproduct of migration or trade. At the end of the talk I was approached by a member of the audience who told me about an ‘unusual’ snail that he had observed while cleaning statuary in the grounds of the nearby country house at Cliveden, Buckinghamshire. This snail looked unlike any other British species that he was familiar with, so I asked him to send me a sample.

I recognised the snails as *Papillifera papillaris*, which I have previously collected at Ostia, near Rome, and this identification has been confirmed. My contact at Cliveden had discovered a previously unknown colony of this species living in southeast England. This is a new addition to the British fauna. How was this Mediterranean land snail introduced into the UK and how long has it been living here?

Cliveden, which now belongs to the UK National Trust, was built in 1851 and was formerly the home of members of the Astor family who were prominent in British politics in the early 20th century. The house itself is now let as a hotel and the 375 acres of gardens and woodland are open to the public. The south-facing façade of the house is fronted by formal gardens which include a large balustrade that was brought from the gardens of the Villa Borghese in Rome and
set up at Cliveden in 1896. The balustrade and its decorative pedestals are of travertine marble, and the sections are linked with brick-tile panels behind the seats. It was carved in 1618-19 for Cardinal Scipione Massimi and the pedestals at each end are carved in high relief with the dragons and eagles of the House of Borghese, whereas those in the centre bear fountains. The snails were found in crevices and deeply carved details in the marble sections.

A search suggests that *P. papillaris* is confined to the Borghese Balustrade and the colony appears to consist of no more than about 100 individuals. It is assumed that the snails were brought to Cliveden when the balustrade was imported from Rome in 1896. What is amazing is that this colony has survived in Britain for over 100 years and that, despite the thousands of people who visit Cliveden every year, it had not previously been recorded.

Technique and practice:

Shell-working in the western Pacific and Island Southeast Asia

Kath Szabó

Email: katherine.szabo@anu.edu.au

The above is the title of the PhD thesis recently submitted (successfully!) by Kath Szabó at the Australian National University, Canberra, Australia. Broadly, it was an attempt to utilise information gathered from the analysis of shell artefacts and associated production technologies to shed light on major questions in Asia-Pacific regional prehistory. A short abstract follows.

Abstract

The Lapita cultural complex has been a focal point of Pacific archaeology for many years. Not only is it materially distinctive, but it is also cast as signalling the first colonisation of the western Pacific beyond the main Solomon Islands chain, the introduction of a Neolithic way of life to this area, and providing the cultural base from which later Polynesian cultures emerged. The sudden appearance in the archaeological record of the first Lapita sites, around 3300 BP in the Bismarck Archipelago north of the main island of New Guinea, has generated questions as to the ‘origins’ of the Lapita cultural complex. Such questions and ensuing debate have revolved around the relative cultural inputs from Island Southeast Asia on the one hand, and incumbent western Pacific populations on the other. Despite decades of fierce debate, archaeological material from Island Southeast Asia, the western Pacific Islands, and the Lapita cultural complex itself, has never been physically compared in any systematic way.

Artefacts produced in shell have been central to arguments for both Lapita representing an ‘extension’ of the Island Southeast Asian Neolithic and a local trajectory encompassing the Neolithic transition in the western Pacific. In some instances, the same evidence is used to support diametrically-opposed cases. It was thus felt that a controlled comparison of worked shell material across Island Southeast Asia and the western Pacific, deriving from different temporal contexts, would be fruitful. To this end, shell assemblages from 19 different sites across the study region were isolated, analysed and compared.

The issue of social and ancestral relationships, both through time and across space, is one that is challenging to address. Necessarily, it broaches longstanding disagreements within archaeology as a whole, such as the status of diffusion as a mechanism for social change and the issue of ‘homology’ versus ‘analogy’. Thus, as well as presenting the results of the analyses conducted, this thesis details new theoretical and methodological perspectives that have both structured the overall research and facilitated interpretation.

Through the application of a rigorous methodology, situated within a transparent theoretical framework, clear patterns have emerged. The results do not agree with either ‘intrusionist’ or
‘indigenist’ arguments for the genesis of the Lapita cultural complex. Rather, they suggest widespread relationships in shell-working practices across the Island Southeast Asian/western Pacific area that have a considerable time depth.

More archaeomalacology from Israel: some recent papers from Henk Mienis

Abstract: A multidisciplinary environmental study was carried out on sediments and archaeological remains exposed at the well-preserved prehistoric camp of Ohalo II on the southwest shore of the Sea of Galilee. In situ hut floors, hearths and other features were radiocarbon dated to 19,500 BP. The remains included large quantities of charred material and animal bones and show that the range of plants and animals (about 240 species) was similar to that encountered in the area today. These included 15 species of freshwater gastropods and two bivalves, some of which were considered intrusive and none of which was of economic value. Nevertheless, they include spring, brook, river, lake, lagoon and marsh species and attest to the variety of available habitats. Of the four species of land snails recorded, Levantina spiriplana caesareana and Helix engaddensis are edible and may have been collected by the inhabitants of Ohalo II for that purpose. Overall, water level fluctuations were the most dramatic environmental events and were probably caused by climatic changes and tectonic activity.

Abstract: Evidence for occupation followed by burials within the Chalcolithic period was exposed during the clearance of Byzantine foundations prior to the construction of a tunnel bypass at Horvat Castra, on the southern outskirts of Haifa just 1.5 km east of the present shore line. The Chalcolithic material had been deposited in a cave, the roof of which must have been removed (or collapsed) during the Byzantine period at the latest. It included five species of Mediterranean marine shells: Patella caerulea (2), Zonaria pupa (1 apertural fragment), Phalium granulatum undulatum (1 ‘cassid lip’), Glycymeris insubricus (53 valves) and Cerastoderma glaucum (1 umbonal fragment). Of these, only the limpets appeared to have been collected live. Two of the Glycymeris valves had been artificially holed at the umbo and the others may have been stockpiled with the intention of making pendants.

Abstract: A number of terrestrial and aquatic shells were hand-picked during the excavation of a 5th-7th century Byzantine church at Karkur in the Beer Sheva region of Israel. Some of the land snails were deemed to be of recent origin and only the aquatic species were studied. These included the marine gastropods Erosaria spurca (1), Monetaria moneta (2) and Hexaplex trunculus (1); the marine bivalves Glycymeris insubricus (27), Spondylus gaederopus (1), Acanthocardia tuberculata (4) and Donax trunculus (5); and the freshwater bivalves Mutela dubia (2) and Aspatharia rubens [=Chambardia rubens arcuata] (15). All but one of the marine species were collected at a distance of at least 50 km in the Mediterranean Sea; the exception was Monetaria moneta, the specimens of which are thought to have been collected somewhere in
the Indian Ocean. The freshwater mussels were also imported from some considerable distance, probably for their brilliant iridescent interiors. All the material probably reached the site as trade items. Most of the marine shells can be interpreted as beads or pendants, although the presence of several well preserved valves of *Donax trunculus* suggests that this species may have been imported as a food item.

Abstract: Molluscs were recovered from 12 different locations during excavations of churches and associated buildings at Nessana, near Beer Sheva, Israel. Most if not all were attributed to the Byzantine-Early Arab period. 1221 shells and shell fragments were recorded, of which 44 (3.6%) were marine gastropods, 1 (0.1%) was a freshwater gastropod, 820 (67.1%) were land snails, 178 (14.6%) were marine bivalves and 178 (14.6%) were freshwater bivalves. Although the bulk of the sample consisted of land snails, all the species identified (7) were of local origin. All the marine and freshwater species (33) had been imported over a considerable distance: the two freshwater mussels from the Nile, 15 gastropods and bivalves from the Mediterranean Sea and 15 more from the Red Sea. Some of the Mediterranean shells (*Tonna galea, Cymatium parthenopeum, Mytilus galloprovincialis, Spondylus gaederopus* and *Callista chione*) are thought to have been imported from the central rather than the eastern Mediterranean on the basis of size. Most of the shells were probably brought to the site for ornamental purposes, although *Donax trunculus* may have been eaten. Most of the land snails came from rodent middens and some may be of recent origin.

Abstract: A further 658 shells and shell fragments were received from the excavations at Nessara after the main report had been submitted for publication (see previous abstract). Of these, 18 (2.7%) were marine gastropods, 456 (69.3%) were land snails, 34 (5.2%) were marine bivalves and 150 (22.8%) were freshwater bivalves. Twenty-four taxa were represented of which six species were land snails, two were Nile freshwater mussels, five were Mediterranean species and 11 were Red Sea species. The study of this second assemblage from Nessara confirmed the conclusions reached in the main report.

The inaugural ICAZ Archaeomalacology Working Group Meeting
Gainesville, Florida, 17-19 February 2005

Kath Szabó
Email: katherine.szabo@anu.edu.au

This February the inaugural meeting of the ICAZ Archaeomalacology Working Group was held in Gainesville, Florida, with the theme ‘The status of archaeomalacology in the 21st century’. Hosted by the Florida Museum of Natural History, and organised by Working Group co-ordinator Irv Quitmyer, over 20 archaeomalacologists presented aspects of their research from around the world. Participants came from as far away as Greece, Spain, England, Australia and Hungary, with a number from Canada and the United States being somewhat closer to home. Irv gave everyone a great example of southern hospitality by meeting everyone at the airport and
running a personal shuttle service to the accommodation – much appreciated by all the travel-
weary delegates!

The meeting began with an address by Douglas Jones, Director of the Florida Museum of
Natural History and no slouch in the archaeomalacology department himself! Following this,
Ken Sassaman gave a fantastic guest presentation introducing us all to the prehistory of Archaic
Period shellfish use in Eastern North America from 8000-3000 BP. The rest of the day was spent
listening to colleagues present their research, with Lilian Karali (Greece), Nathalie Serrand
(France), David Maxwell (Canada), Victoria Stosel (US), Esteban Álvarez Fernández (Spain),
Daniella Bar-Yosef Mayer (Israel) and Diana Carvajal Contreras (Colombia/Canada) presenting
on day one. After a short break, we were all given a guided tour of the Florida Museum of
Natural History by Bill Marquardt. The Museum is fabulous, being both visually engaging while
providing lots of information. A wine and nibbles reception in the Museum, following the tour,
provided a great opportunity to get to know each other and discuss the events of the day.

After meeting for breakfast on the second day, a full day of papers got underway. Kitty
Emery, the assistant curator of environmental archaeology at the Museum, gave a welcome
address as well as introducing us to aspects of her own archaeomalacological research. The
papers that followed were presented by Greg Campbell (England), Sándor Gulyás and Pál
Sümegi (Hungary), Canan Cakirlar (Turkey/Germany), Arlene Fradkin (US), Dan Marelli (US),
Teresa Steele (US/Germany), David Morgan (US), Evan Peacock (US), Marcello Mannino and
Ken Thomas (England) and Douglas Jones, Irv Quitmyer and C. Fred T. Andrus (US). An
informal ‘pub’ gathering in the evening provided a great opportunity for everyone to get to know
each other further.

Day three of the conference was an all-day field trip, visiting archaeological sites in the
surrounding area. The first stop was the Crystal River State Archaeological Site, where everyone
got to see huge midden deposits and burial mounds in beautifully maintained surrounds. After a
leisurely lunch by Crystal River (where a lucky few got to see a porpoise!), we headed to a huge
shell mound near Cedar Key. This was followed by a visit to Shyloh Cemetery in the historic
town of Rosewood. Many of the graves here are decorated with shells reflecting the tie with the
sea of Floridians from all backgrounds and walks of life, and this gave us a different perspective
on the history of shell use in the northern Florida area. On the way back to Gainesville, we
stopped for a group dinner at Robinson’s Restaurant, which specialises in Florida fried seafood.
Irv demonstrated once again that he thinks of everything by bringing beers for all to the
restaurant so we were not restricted to non-alcoholic beverages! Everyone left very full and
content!

The meeting was a huge success, and hopefully the publication of the proceedings will allow
other archaeomalacologists who couldn’t attend to share in the experience. A huge ‘thank you’
must go to Irv Quitmyer, who organised a fantastic programme and made sure everything ran
like clockwork. Thanks must also go to his wife Janice, who gave so much of her time to helping
behind the scenes and acting as a shuttle service. The staff at the Florida Museum of Natural
History, who organised the venue, IT and audio-visual, did a fantastic job and also get a big
‘thanks’. The titles and abstracts of papers presented can be viewed online at
http://triton.anu.edu.au (following the link for the meeting), and when I return to Australia in
early April (I’m presently in the Philippines analysing shell artefacts…) photos from the meeting
will go online. We hope to see you all at the next meeting!